283 research outputs found

    The Italian Summer Students Program at Fermi National Accelerator Laboratory and other US Laboratories

    Full text link
    Since 1984 INFN scientists performing experiments at Fermilab have been running a two month summer training program for Italian students at the lab. In 1984 the program involved only a few physics students from the Pisa group, but it was later extended to other groups and to engineering students. Since 2004 the program has been supported in part by DOE in the frame of an exchange agreement with INFN. The Fermilab training programs spanned from data analysis to design and construction of particle detectors and accelerator components, research on superconductive elements, theory of accelerators, and analysis of astrophysical data. At the other US laboratories the offered training was on Space Science.Comment: Proceedings of the XXXIX International Conference on High Energy Physics, July 4-11, 2018, Seoul (Korea

    Non-Invasive and Quantitative Estimation of Left Atrial Fibrosis Based on P Waves of the 12-Lead ECG—A Large-Scale Computational Study Covering Anatomical Variability

    Get PDF
    The arrhythmogenesis of atrial fibrillation is associated with the presence of fibrotic atrial tissue. Not only fibrosis but also physiological anatomical variability of the atria and the thorax reflect in altered morphology of the P wave in the 12-lead electrocardiogram (ECG). Distinguishing between the effects on the P wave induced by local atrial substrate changes and those caused by healthy anatomical variations is important to gauge the potential of the 12-lead ECG as a non-invasive and cost-effective tool for the early detection of fibrotic atrial cardiomyopathy to stratify atrial fibrillation propensity. In this work, we realized 54,000 combinations of different atria and thorax geometries from statistical shape models capturing anatomical variability in the general population. For each atrial model, 10 different volume fractions (0–45%) were defined as fibrotic. Electrophysiological simulations in sinus rhythm were conducted for each model combination and the respective 12-lead ECGs were computed. P wave features (duration, amplitude, dispersion, terminal force in V1) were extracted and compared between the healthy and the diseased model cohorts. All investigated feature values systematically in- or decreased with the left atrial volume fraction covered by fibrotic tissue, however value ranges overlapped between the healthy and the diseased cohort. Using all extracted P wave features as input values, the amount of the fibrotic left atrial volume fraction was estimated by a neural network with an absolute root mean square error of 8.78%. Our simulation results suggest that although all investigated P wave features highly vary for different anatomical properties, the combination of these features can contribute to non-invasively estimate the volume fraction of atrial fibrosis using ECG-based machine learning approaches

    Non-Invasive Identification of Atrial Fibrillation Driver Location Using the 12-lead ECG: Pulmonary Vein Rotors vs. other Locations

    Get PDF
    Atrial fibrillation (AF) is an irregular heart rhythm due to disorganized atrial electrical activity, often sustained by rotational drivers called rotors. In the present work, we sought to characterize and discriminate whether simulated single stable rotors are located in the pulmonary veins (PVs) or not, only by using non-invasive signals (i.e., the 12-lead ECG). Several features have been extracted from the signals, such as Hjort descriptors, recurrence quantification analysis (RQA), and principal component analysis. All the extracted features have shown significant discriminatory power, with particular emphasis to the RQA parameters. A decision tree classifier achieved 98.48% accuracy, 83.33% sensitivity, and 100% specificity on simulated data.Clinical Relevance-This study might guide ablation procedures, suggesting doctors to proceed directly in some patients with a pulmonary veins isolation, and avoiding the prior use of an invasive atrial mapping system

    Using Machine Learning to Characterize Atrial Fibrotic Substrate from Intracardiac Signals with a Hybrid in silico and in vivo Dataset

    Get PDF
    [EN] In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. However, it remains an open challenge to find fibrotic areas and to differentiate their density and transmurality. This study aims to identify the volume fraction and transmurality of fibrosis in the atrial substrate. Simulated cardiac electrograms, combined with a generalized model of clinical noise, reproduce clinically measured signals. Our hybrid dataset approach combines in silico and clinical electrograms to train a decision tree classifier to characterize the fibrotic atrial substrate. This approach captures different in vivo dynamics of the electrical propagation reflected on healthy electrogram morphology and synergistically combines it with synthetic fibrotic electrograms from in silico experiments. The machine learning algorithm was tested on five patients and compared against clinical voltage maps as a proof of concept, distinguishing non-fibrotic from fibrotic tissue and characterizing the patient's fibrotic tissue in terms of density and transmurality. The proposed approach can be used to overcome a single voltage cut-off value to identify fibrotic tissue and guide ablation targeting fibrotic areas.We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through DO637/22-3, LO2093/1-1 and LU 2294/1-1, by the European Union's Horizon 2020 programme (grant agreement No.766082, MY-ATRIA project), by the KIT-Publication Fund of the Karlsruhe Institute of Technology and by the Plan Estatal de Investigacion Cientifica y Tecnica y de Innovacion 2017-2020 from the Ministerio de Ciencia e Innovacion y Universidades (PID2019-104356RB-C41/AEI/10.13039/501100011033)Sánchez Arciniegas, JP.; Luongo, G.; Nothstein, M.; Unger, LA.; Saiz Rodríguez, FJ.; Trenor Gomis, BA.; Luik, A.... (2021). Using Machine Learning to Characterize Atrial Fibrotic Substrate from Intracardiac Signals with a Hybrid in silico and in vivo Dataset. Frontiers in Physiology. 12:1-15. https://doi.org/10.3389/fphys.2021.699291S1151

    Machine Learning to Find Areas of Rotors Sustaining Atrial Fibrillation from the ECG

    Get PDF
    Atrial fibrillation (AF) is the most frequent irregular heart rhythm due to disorganized atrial electrical activity, often sustained by rotational drivers called rotors. The non-invasive localization of AF drivers can lead to improved personalized ablation strategy, suggesting pulmonary vein (PV) isolation or more complex extra-PV ablation procedures in case the driver is on other atrial regions. We used a Machine Learning approach to characterize and discriminate simulated single stable rotors (1R) location: PVs, left atrium (LA) excluding the PVs, and right atrium (RA), utilizing solely non-invasive signals (i.e., the 12-lead ECG). 1R episodes sustaining AF were simulated. 128 features were extracted from the signals. Greedy forward algorithm was implemented to select the best feature set which was fed to a decision tree classifier with hold-out cross-validation technique. All tested features showed significant discriminatory power, especially those based on recurrence quantification analysis (up to 80.9% accuracy with single feature classification). The decision tree classifier achieved 89.4% test accuracy with 18 features on simulated data, with sensitivities of 93.0%, 82.4%, and 83.3% for RA, LA, and PV classes, respectively. Our results show that a machine learning approach can potentially identify the location of 1R sustaining AF using the 12-lead ECG
    • …
    corecore